从演示中学习的方法(LFD)通过模仿用户表现出在获取行为策略方面的成功。但是,即使对于一项任务,LFD也可能需要大量的演示。对于必须通过演示学习许多任务的多功能代理,如果孤立地学习每个任务,此过程将大大负担用户的负担。为了应对这一挑战,我们介绍了从演示中学习的新颖问题,该问题使代理商能够不断地基于从先前演示的任务中学到的知识,以加速学习新任务,从而减少所需的示范量。作为解决这个问题的一种解决方案,我们提出了第一种终身学习方法来进行逆强化学习,该方法通过演示学习连续的任务,不断地在任务之间转移知识以提高绩效。
translated by 谷歌翻译
Psychology research has long explored aspects of human personality such as extroversion, agreeableness and emotional stability. Categorizations like the `Big Five' personality traits are commonly used to assess and diagnose personality types. In this work, we explore the question of whether the perceived personality in language models is exhibited consistently in their language generation. For example, is a language model such as GPT2 likely to respond in a consistent way if asked to go out to a party? We also investigate whether such personality traits can be controlled. We show that when provided different types of contexts (such as personality descriptions, or answers to diagnostic questions about personality traits), language models such as BERT and GPT2 can consistently identify and reflect personality markers in those contexts. This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems. We also contribute a crowd-sourced data-set of personality descriptions of human subjects paired with their `Big Five' personality assessment data, and a data-set of personality descriptions collated from Reddit.
translated by 谷歌翻译
This paper investigates the problem of Named Entity Recognition (NER) for extreme low-resource languages with only a few hundred tagged data samples. NER is a fundamental task in Natural Language Processing (NLP). A critical driver accelerating NER systems' progress is the existence of large-scale language corpora that enable NER systems to achieve outstanding performance in languages such as English and French with abundant training data. However, NER for low-resource languages remains relatively unexplored. In this paper, we introduce Mask Augmented Named Entity Recognition (MANER), a new methodology that leverages the distributional hypothesis of pre-trained masked language models (MLMs) for NER. The <mask> token in pre-trained MLMs encodes valuable semantic contextual information. MANER re-purposes the <mask> token for NER prediction. Specifically, we prepend the <mask> token to every word in a sentence for which we would like to predict the named entity tag. During training, we jointly fine-tune the MLM and a new NER prediction head attached to each <mask> token. We demonstrate that MANER is well-suited for NER in low-resource languages; our experiments show that for 100 languages with as few as 100 training examples, it improves on state-of-the-art methods by up to 48% and by 12% on average on F1 score. We also perform detailed analyses and ablation studies to understand the scenarios that are best-suited to MANER.
translated by 谷歌翻译
A hallmark of human intelligence is the ability to learn new concepts purely from language. Several recent approaches have explored training machine learning models via natural language supervision. However, these approaches fall short in leveraging linguistic quantifiers (such as 'always' or 'rarely') and mimicking humans in compositionally learning complex tasks. Here, we present LaSQuE, a method that can learn zero-shot classifiers from language explanations by using three new strategies - (1) modeling the semantics of linguistic quantifiers in explanations (including exploiting ordinal strength relationships, such as 'always' > 'likely'), (2) aggregating information from multiple explanations using an attention-based mechanism, and (3) model training via curriculum learning. With these strategies, LaSQuE outperforms prior work, showing an absolute gain of up to 7% in generalizing to unseen real-world classification tasks.
translated by 谷歌翻译
Biomedical image segmentation is one of the fastest growing fields which has seen extensive automation through the use of Artificial Intelligence. This has enabled widespread adoption of accurate techniques to expedite the screening and diagnostic processes which would otherwise take several days to finalize. In this paper, we present an end-to-end pipeline to segment lungs from chest X-ray images, training the neural network model on the Japanese Society of Radiological Technology (JSRT) dataset, using UNet to enable faster processing of initial screening for various lung disorders. The pipeline developed can be readily used by medical centers with just the provision of X-Ray images as input. The model will perform the preprocessing, and provide a segmented image as the final output. It is expected that this will drastically reduce the manual effort involved and lead to greater accessibility in resource-constrained locations.
translated by 谷歌翻译
Generating realistic 3D worlds occupied by moving humans has many applications in games, architecture, and synthetic data creation. But generating such scenes is expensive and labor intensive. Recent work generates human poses and motions given a 3D scene. Here, we take the opposite approach and generate 3D indoor scenes given 3D human motion. Such motions can come from archival motion capture or from IMU sensors worn on the body, effectively turning human movement in a "scanner" of the 3D world. Intuitively, human movement indicates the free-space in a room and human contact indicates surfaces or objects that support activities such as sitting, lying or touching. We propose MIME (Mining Interaction and Movement to infer 3D Environments), which is a generative model of indoor scenes that produces furniture layouts that are consistent with the human movement. MIME uses an auto-regressive transformer architecture that takes the already generated objects in the scene as well as the human motion as input, and outputs the next plausible object. To train MIME, we build a dataset by populating the 3D FRONT scene dataset with 3D humans. Our experiments show that MIME produces more diverse and plausible 3D scenes than a recent generative scene method that does not know about human movement. Code and data will be available for research at https://mime.is.tue.mpg.de.
translated by 谷歌翻译
We introduce Action-GPT, a plug and play framework for incorporating Large Language Models (LLMs) into text-based action generation models. Action phrases in current motion capture datasets contain minimal and to-the-point information. By carefully crafting prompts for LLMs, we generate richer and fine-grained descriptions of the action. We show that utilizing these detailed descriptions instead of the original action phrases leads to better alignment of text and motion spaces. Our experiments show qualitative and quantitative improvement in the quality of synthesized motions produced by recent text-to-motion models. Code, pretrained models and sample videos will be made available at https://actiongpt.github.io
translated by 谷歌翻译
We integrate contrastive learning (CL) with adversarial learning to co-optimize the robustness and accuracy of code models. Different from existing works, we show that code obfuscation, a standard code transformation operation, provides novel means to generate complementary `views' of a code that enable us to achieve both robust and accurate code models. To the best of our knowledge, this is the first systematic study to explore and exploit the robustness and accuracy benefits of (multi-view) code obfuscations in code models. Specifically, we first adopt adversarial codes as robustness-promoting views in CL at the self-supervised pre-training phase. This yields improved robustness and transferability for downstream tasks. Next, at the supervised fine-tuning stage, we show that adversarial training with a proper temporally-staggered schedule of adversarial code generation can further improve robustness and accuracy of the pre-trained code model. Built on the above two modules, we develop CLAWSAT, a novel self-supervised learning (SSL) framework for code by integrating $\underline{\textrm{CL}}$ with $\underline{\textrm{a}}$dversarial vie$\underline{\textrm{w}}$s (CLAW) with $\underline{\textrm{s}}$taggered $\underline{\textrm{a}}$dversarial $\underline{\textrm{t}}$raining (SAT). On evaluating three downstream tasks across Python and Java, we show that CLAWSAT consistently yields the best robustness and accuracy ($\textit{e.g.}$ 11$\%$ in robustness and 6$\%$ in accuracy on the code summarization task in Python). We additionally demonstrate the effectiveness of adversarial learning in CLAW by analyzing the characteristics of the loss landscape and interpretability of the pre-trained models.
translated by 谷歌翻译
The number of malware is constantly on the rise. Though most new malware are modifications of existing ones, their sheer number is quite overwhelming. In this paper, we present a novel system to visualize and map millions of malware to points in a 2-dimensional (2D) spatial grid. This enables visualizing relationships within large malware datasets that can be used to develop triage solutions to screen different malware rapidly and provide situational awareness. Our approach links two visualizations within an interactive display. Our first view is a spatial point-based visualization of similarity among the samples based on a reduced dimensional projection of binary feature representations of malware. Our second spatial grid-based view provides a better insight into similarities and differences between selected malware samples in terms of the binary-based visual representations they share. We also provide a case study where the effect of packing on the malware data is correlated with the complexity of the packing algorithm.
translated by 谷歌翻译
SKA脉冲星搜索管道将用于实时检测脉冲星。SKA等现代射电望远镜将在其全面运行中生成数据。因此,基于经验和数据驱动的算法对于诸如候选检测等应用是必不可少的。在这里,我们描述了我们的发现,从测试一种称为Mask R-CNN的最先进的对象检测算法来检测SKA PULSAR搜索管道中的候选标志。我们已经训练了蒙版R-CNN模型来检测候选图像。开发了一种自定义注释工具,以有效地标记大型数据集中感兴趣的区域。我们通过检测模拟数据集中的候选签名成功证明了该算法。本文介绍了这项工作的详细信息,并重点介绍了未来的前景。
translated by 谷歌翻译